

Shanghai Lunsure Electronic Technology Co.,Ltd Tel:0086-21-37185008 Fax:0086-21-57152769

DB3/DC34 AND DB4/DB6

SILICON BIDIRECTIONAL DIAC

DO-35G

DIMENSIONS								
	INCHI	≣S	ММ					
DIM	MIN	MAX	MIN	MAX	NOTE			
Α		.150		3.8				
В		.079		2.00				
С		.020		.52				
D	1.083		27.50					

Features

- The three layer, two terminal, axial lead, hermetically sealed diacs are designed specifically for triggering thyristors.
- They demonstrate low breakover current at breakover voltage as they withstand peak pulse current, The breakover symmetry is within three volts(DB3,DC34,DB4) or four volts(DB6).
- These diacs are intended for use in thyrisitors phase control, circuits for lamp dimming, universal motor speed control, and heat control.

Maximum Ratings

- Operating Temperature: -40°C to +110°C
- Storage Temperature: -40°C to +125°C

Electrical Characteristics @ 25°C Unless Otherwise Specified

Power dissipation on Printed Circuit(I=10mm)	P _C	150mW	T _A =50°C
Repetitive Peak on-state Current DB3,DC34,DB4 DB6	I _{TRM}	2.0A 16A	t _p =10us,f=100Hz
Breakover Voltage DB3 DC34 DB4 DB6	V _{BO}	Min Typ Max 28 32 36V 30 34 38V 35 40 45V 56 60 70V	C=22nF(Note 2)
Breakover Voltage Symmetry DB3, DC34, DB4 DB6	+V _{BO} - -V _{BO}	±3V ±4V	C=22nF(Note 2)
Output Voltage(Note 1)	$V_{o(min)}$	5V	
Breakover Current(Note 1)	I _{BO(max)}	100uA	C=22nF
Rise Time(Note 1)	T _r	1.5us	
Leakage Current(Note 1)	I _{B(max)}	10uA	$V_B=0.5V_{BO(max)}$

NOTES:1.Electrical characteristics applicable in both forward and reverse directions.

2. Connected in parallel with the devices.

RATINGS AND CHARACTERISTIC CURVES DB3/DC34/DB4/DB6

DIAGRAM 1: Current-valtage characteristics

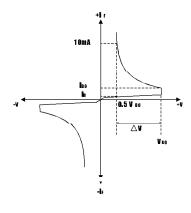


FIG.1-Power dissipation versus ambient temperature (maximum values)

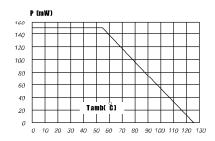


FIG.3-Peak pulse current versus pulse duration (maximum values)

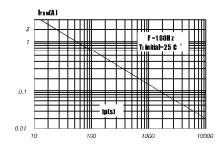


DIAGRAM 2: Test aircuit for output voltage

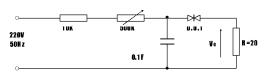


DIAGRAM 3: Test aircuit see alagram2 adjust R for I=0.6A

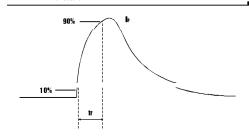
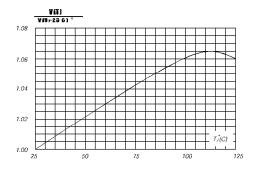



FIG.2-Relative variation of VBO versus junction temperature(typical values)

